On mean discounted numbers of passage times in small balls of Itô processes observed at discrete times

نویسندگان

  • Frédéric Bernardin
  • Denis Talay
  • Mireille Bossy
  • Miguel Martinez
چکیده

The aim of this note is to prove estimates on mean values of the number of times that Itô processes observed at discrete times visit small balls in R. Our technique, in the infinite horizon case, is inspired by Krylov’s arguments in [2, Chap.2]. In the finite horizon case, motivated by an application in stochastic numerics, we discount the number of visits by a locally exploding coefficient, and our proof involves accurate properties of last passage times at 0 of one dimensional semimartingales. Key-words: last passage times,Itô processes observed at discrete times ∗ CETE de Lyon, Laboratoire Régional des Ponts et Chaussées, Clermont-Ferrand, France; [email protected] † INRIA Sophia Antipolis, EPI TOSCA; [email protected] ‡ Université Paris-Est Marne-la-Vallée, France; [email protected] § INRIA Sophia Antipolis, EPI TOSCA; [email protected] in ria -0 03 47 61 0, v er si on 3 9 M ay 2 00 9 Sur les espérances de temps de passage pondérés dans des petites boules pour des processus d’Itô observés en temps discret Résumé : L’objectif de cette note est de démontrer des estimations sur le nombre moyen de visites dans des petites boules de R d’un processus d’Itô, observé à des instants discrets. En horizon de temps infini, notre technique est inspiré des arguments de Krylov dans [2, Chap.2]. En horizon de temps fini, motivé par une application en analyse numérique stochastique, nous pondérons le nombre de visites par un coefficient localement explosif; notre preuve utilise des propriétés fines sur le dernier temps de passage en zéro d’une semimartingale unidimensionnelle. Mots-clés : dernier temps de passage, processus d’Itô observé à temps discret in ria -0 03 47 61 0, v er si on 3 9 M ay 2 00 9 On mean discounted numbers of passage times in small balls 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Passage Number and Culture Time on the Expression and Activity of Insulin-Degrading Enzyme in Caco-2 Cells

Background: Insulin-degrading enzyme (IDE) is a conserved zinc metallopeptidase. Here, we have evaluated the effect of passage number and culture time on IDE expression and activity in colorectal adenocarcinoma cell line (Caco-2). Methods: Caco-2 cells were cultured with different passage ranges of 5-15, 25-35, 52-63 for 48, 72, and 120 hours. Subsequently, IDE expression and enzyme activity we...

متن کامل

Plaque formation of LaSota pathogenic strain of Newcastle disease virus adapted in chick embryo fibroblast cells

In order to adapt LaSota strain of Newcastle disease virus (NDV) on chick embryo fibroblast (CEF) cells, 0.1 ml from LaSota vaccine produced in Razi vaccine and serum research institute inoculated to the CEF cells and was passaged five times in the CEF grown in Eagle’s minimum essential medium (MEM). First to third passages were blind but in fourth passage cytopathic effect of virus was observe...

متن کامل

Comparison of Intramuscular Dexmedetomidine with Intramuscular Ketamine in Children undergoing CT Imaging: A Double-Blind Clinical Trial

  Background   Computed tomography (CT) scan is one of the most frequent tests among children in which they should be completely calm and immobilized for a correct patient test. In th...

متن کامل

A Shape Theorem for Riemannian First-passage Percolation

Riemannian first-passage percolation (FPP) is a continuum analogue of standard FPP on the lattice, where the discrete passage times of standard FPP are replaced by a random Riemannian metric. We prove a shape theorem for this model— that balls in this metric grow linearly in time—and from this conclude that the metric is complete.

متن کامل

Weak Concentration for First Passage Percolation Times on Graphs and General Increasing Set-valued Processes

A simple lemma bounds s.d.(T )/ET for hitting times T in Markov chains with a certain strong monotonicity property. We show how this lemma may be applied to several increasing set-valued processes. Our main result concerns a model of first passage percolation on a finite graph, where the traversal times of edges are independent Exponentials with arbitrary rates. Consider the percolation time X ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011